
Exercises on realizability
(Midlands Graduate School 2022)

Andrej Bauer

April 10, 2022

Instructions
These are the exercises accompanying the “Realizability” lectures, given at the Mid-
lands Graduate School 2022. During the exercise classes we shall solve them in the
following way:

1. I will explain the exercise and review the background knowledge.

2. You will talk to your neighbor for 10 minutes about the exercise.

3. We will discuss the solution together.

You are of course welcome to work on the exercises ahead of the class. Please consult
the accompanying “Notes on realizability” (PDF, GitHub repository) and discuss the
exercises on the MGS Discord server.

1 Lecture 1: Models of computation

1.1 Dove-tailing
Let ϕn be the partial computable function computed by the Turing machine encoded
by n ∈ N. Write e↓ to indicate that the value of e is defined. Show that there is a partial
computable function f : N⇀ N such that, for all n, k ∈ N,

fn = k ⇒ ϕn(k)↓ and (∃m ∈ N .ϕn(m)↓)⇒ fn↓.

You are not expected to construct an actual Turing machine, but you should describe in
some detail how the machine works.

Is there a Haskell function f : (Int→ Int)→ Int with an analogous property?

1.2 Modulus of continuity
Write peq for the encoding of entity e as a natural number, and let B = NN be the Baire
space. Given α ∈ B, let α(k) = [α0, . . . , α(k − 1)]. Write 0(ω) for the sequence of all
zeroes and 0(k) for the list of k zeroes [0, . . . , 0].

1

http://www.andrej.com/zapiski/MGS-2022/notes-on-realizability.pdf
https://github.com/andrejbauer/notes-on-realizability


Recall how γ ∈ B encodes a map ηγ : B⇀ B. Given input α ∈ B and i ∈ N, we
compute the value of ηγ α i by looking up in succession

γ(pi::[]q),

γ(pi::[α0]q),

γ(pi::[α0, α1]q),

γ(pi::[α0, α1]q),

γ(pi::[α0, α1, α2]q),

...

until we find the first non-zero one j > 0 and output j − 1. More precisely, define
`(γ, α) : N⇀ N by

`(γ, α)(i) = γ(pi::α(k)q)− 1 where k = mink(γ(pi::α(k)q) 6= 0)

(if not such k exists then `(γ, α)(i) is undefined), and let the map ηγ : B⇀B encoded
by γ be

ηγ(α) =

{
`(γ, α) if `(γ, α) is a total map,
undefined otherwise.

Suppose f : B→ B is a total map satisfying

∀k ∈ N.∃m ∈ N.∀α ∈ B. α(m) = 0(k) ⇒ (fα)k = (f0(ω))k. (1)

We say that m is a modulus of continuity for f at k.
Verify that f satisfies (1) if, and only if, it is continuous with respect to the product

topology on B.
Construct a Type 2 Turing machine which accepts as input γ ∈ B and k ∈ N and

outputs a modulus of continuity for ηγ at k. We assume that γ encodes a total map
B → B. Concretely, the read-only input tape contains k followed by γ (in Type 2
computability tape cells contain numbers or blanks). The machine should terminate
and output a suitable m. Of course, it suffices to describe the machine informally.

Is there a corresponding Haskell map modulus : Int→ (Int→ Int)→ Int?

1.3 Programming in λ-calculus
Use the online untyped λ-calculus interpreter at

http://www.andrej.com/zapiski/MGS-2022/lambda/

to implement a function which tests whether a given natural number is prime. Consult
the notes section on the λ-calculus to get basic arithmetic and Booleans going. If
you prefer to use the much faster off-line interpreter, you can get compile the language
lambda from the Programming Languages Zoo – but refrain from looking at examples
because they contain the solution.

2

http://www.andrej.com/zapiski/MGS-2022/lambda/
http://plzoo.andrej.com/language/lambda.html


The actual programming should be done in the privacy of your computer. During
the exercise class you should just write down a list of specific functions (zero testing,
searching, division, etc.) that you need to implement. Assuming you have implemented
those, write down the primality testing function. To get you started, consult Figure 1
(where ^ stands for λ):

-- the constant function
K := ^ x y . x ;

-- pairing
pair := ^ a b . ^p . p a b ;
first := ^ p . p (^x y . x) ;
second := ^ p . p (^x y. y) ;

-- Booleans
true := ^x y . x ;
false := ^x y . y ;
if := ^u . u ;

-- recursive definitions
fix := ^f . (^x . f (x x)) (^x . f (x x)) ;

-- arithmetic
0 := ^f x . x ;
1 := ^f x . f x ;
2 := ^f x . f (f x) ;
3 := ^f x . f (f (f x)) ;
+ := ^n m f x . (n f) ((m f) x) ;

* := ^n m f x . (n (m f)) x ;
succ := ^n f x . f (n f x) ;
pred := ^n . second (n (^p. pair (succ (first p)) (first p)) (pair 0 0)) ;
iszero := ^n . (n (K false)) true ;

Figure 1: Basic programming in lambda.

3


	Lecture 1: Models of computation
	Dove-tailing
	Modulus of continuity
	Programming in -calculus


