
A review of the simply typed λ-calculus

Andrej Bauer

March 24, 2022

The λ-calculus is the abstract theory of functions, just like group theory
is the abstract theory of symmetries. There are two basic operations that can
be performed with functions. The first one is the application of a function
to an argument: if f is a function and a is an argument, then fa is the
application of f to a. The second operation is abstraction: if x is a variable
and t is an expression in which x may appear, then there is a function f
defined by

fx = t .

Here we gave the name f to the newly formed function. But we could have
expressed the same function without giving it a name; this is usually written
as

x 7→ t ,

and it means “x is mapped to t”. In λ-calculus we use a different notation,
which is more convenient when abstractions are nested:

λx. t .

This operation is called λ-abstraction. For example, λx. λy. (x+ y) is the
function which maps an argument a to the function λy. (a+ y).

In an expression λx. t the variable x is bound in t.
There are two kinds of λ-calculus, the typed and the untyped one. In the

untyped version there are no restrictions on how application is formed, so
that an expression such as

λx. (xx)

is valid, whatever it means. In typed λ-calculus every expression has a type,
and there are rules for forming valid expressions and types. For example,
we can only form an application f, a when a has a type A and f has a type
A → B, which indicates a function taking arguments of type A and giving

1

results of type B. The judgment that expression t has a type A is written
as

t : A .

To computer scientists the idea of expressions having types is familiar from
programming languages, whereas mathematicians can think of types as sets
and read t : A as t ∈ A. We will concentrate on the typed λ-calculus.

We now give a precise definition of what constitutes a simply-typed λ-
calculus. First, we are given a set of simple types, which are generated from
basic types by formation of products and function types:

Basic type B ::= B0 | B1 | B2 · · ·
Simple type A ::= B | A1 ×A2 | A1 → A2.

Function types associate to the right:

A→ B → C ≡ A→ (B → C) .

We assume there is a countable set of variables x, y, u, . . . We are also given
a set of basic constants. The set of terms is generated from variables and
basic constants by the following grammar:

Variable v ::= x | y | z | · · ·
Constant c ::= c1 | c2 | · · ·

Term t ::= v | c | ∗ | 〈t1, t2〉 | fst t | snd t | t1 t2 | λx : A . t

In words, this means:

1. a variable is a term,

2. each basic constant is a term,

3. the constant ∗ is a term, called the unit,

4. if u and t are terms then 〈u, t〉 is a term, called a pair,

5. if t is a term then fst t and snd t are terms,

6. if u and t are terms then u t is a term, called an application

7. if x is a variable, A is a type, and t is a term, then λx : A . t is a term,
called a λ-abstraction.

2

The variable x is bound in λx : A . t. Application associates to the left, thus
s t u = (s t)u. The free variables FV(t) of a term t are computed as follows:

FV(x) = {x} if x is a variable

FV(a) = ∅ if a is a basic constant

FV(〈u, t〉) = FV(u) ∪ FV(t)

FV(fst t) = FV(t)

FV(snd t) = FV(t)

FV(u t) = FV(u) ∪ FV(t)

FV(λx. t) = FV(t) \ {x} .

If x1, . . . , xn are distinct variables and A1, . . . , An are types then the
sequence

x1 : A1, . . . , xn : An

is a typing context, or just context. The empty sequence is sometimes denoted
by a dot ·, and it is a valid context. Context are denoted by capital Greek
letters Γ, ∆, . . .

A typing judgment is a judgment of the form

Γ | t : A

where Γ is a context, t is a term, and A is a type. In addition the free
variables of t must occur in Γ, but Γ may contain other variables as well.
We read the above judgment as “in context Γ the term t has type A”. Next
we describe the rules for deriving typing judgments.

Each basic constant ci has a uniquely determined type Ci,

Γ | ci : Ci

The type of a variable is determined by the context:

x1 : A1, . . . , xi : Ai, . . . , xn : An | xi : Ai
(1 ≤ i ≤ n)

The constant ∗ has type 1:

Γ | ∗ : 1

The typing rules for pairs and projections are:

Γ | u : A Γ | t : B

Γ | 〈u, t〉 : A×B
Γ | t : A×B
Γ | fst t : A

Γ | t : A×B
Γ | snd t : B

3

The typing rules for application and λ-abstraction are:

Γ | t : A→ B Γ | u : A

Γ | t u : B

Γ, x : A | t : B

Γ | (λx : A . t) : A→ B

Lastly, we have equations between terms; for terms of type A in context Γ,

Γ | u : A , Γ | t : B ,

the judgment that they are equal is written as

Γ | u = t : A .

Note that u and t necessarily have the same type; it does not make sense to
compare terms of different types. We have the following rules for equations:

1. Equality is an equivalence relation:

Γ | t = t : A

Γ | t = u : A

Γ | u = t : A

Γ | t = u : A Γ | u = v : A

Γ | t = v : A

2. The weakening rule:
Γ | u = t : A

Γ, x : B | u = t : A

3. Unit type:

Γ | t = ∗ : 1

4. Equations for product types:

Γ | u = v : A Γ | s = t : B

Γ | 〈u, s〉 = 〈v, t〉 : A×B
Γ | s = t : A×B

Γ | fst s = fst t : A

Γ | s = t : A×B
Γ | snd s = snd t : A

Γ | t = 〈fst t, snd t〉 : A×B

Γ | fst 〈u, t〉 = u : A Γ | snd 〈u, t〉 = t : A

5. Equations for function types:

Γ | s = t : A→ B Γ | u = v : A

Γ | s u = t v : B

Γ, x : A | t = u : B

Γ | (λx : A . t) = (λx : A . u) : A→ B

Γ | (λx : A . t)u = t[u/x] : A
(β-rule)

Γ | λx : A . (t x) = t : A→ B
if x 6∈ FV(t) (η-rule)

4

This completes the description of a simply-typed λ-calculus.
Apart from the above rules for equality we might want to impose addi-

tional equations. In this case we do not speak of a λ-calculus but rather of
a λ-theory. Thus, a λ-theory T is given by a set of basic types, a set of basic
constants, and a set of equations of the form

Γ | u = t : A .

We summarize the preceding definitions.

Definition 1 A simply-typed λ-calculus is given by a set of basic types and
a set of basic constants together with their types. A simply-typed λ-theory
is a simply-typed λ-calculus together with a set of equations.

We use letters S, T, U, . . . to denote theories.

Example 2 The theory of a group is a simply-typed λ-theory. It has one
basic type G and three basic constant, the unit e, the inverse i, and the
group operation m,

e : G , i : G→ G , m : G× G→ G ,

with the following equations:

x : G | m〈x, e〉 = x : G

x : G | m〈e, x〉 = x : G

x : G | m〈x, ix〉 = e : G

x : G | m〈ix, x〉 = e : G

x : G, y : G, z : G | m〈x, m〈y, z〉〉 = m〈m〈x, y〉, z〉 : G

These are just the familiar axioms for a group.

Example 3 In general, any algebraic theory A determines a λ-theory. There
is one basic type A and for each operation f of arity k there is a basic con-
stant f : Ak → A, where Ak is the k-fold product A×· · ·×A. It is understood
that A0 = 1. The terms of A are translated to the terms of the correspond-
ing λ-theory in a straightforward manner. For every axiom t = u of A the
corresponding axiom in the λ-theory is

x1 : A, . . . , xn : A | t = u : A

where x1, . . . , xn are the variables occurring in t and u.

5

Example 4 The theory of a directed graph is a simply-typed theory with
two basic types, V for vertices and E for edges, and two basic constant,
source src and target trg,

src : E→ V , trg : E→ V .

There are no equations.

Example 5 An example of a λ-theory is readily found in the theory of
programming languages. The mini-programming language PCF is a simply-
typed λ-calculus with a basic type nat for natural numbers, and a basic
type bool of Boolean values,

Basic type B ::= nat | bool.

There are basic constants zero 0, successor succ, the Boolean constants
true and false, comparison with zero iszero, and for each type A the
conditional condA and the fixpoint operator fixA. They have the following
types:

0 : nat

succ : nat→ nat

true : bool

false : bool

iszero : nat→ bool

condA : bool→ A→ A

fixA : (A→ A)→ A

The equational axioms of PCF are:

· | iszero 0 = true : bool

x : nat | iszero (succx) = false : bool

u : A, t : A | condA true u t = u : A

u : A, t : A | condA false u t = t : A

t : A→ A | fixA t = t (fixA t) : A

Example 6 Another example of a λ-theory is the theory of a reflexive type.
This theory has one basic type D and two constants

r : D→ D→ D s : (D→ D)→ D

6

satisfying the equation

f : D→ D | r (s f) = f : D→ D (1)

which says that s is a section and r is a retraction, so that the function type
D→ D is a subspace (even a retract) of D. A type with this property is said
to be reflexive. We may additionally stipulate the axiom

x : D | s (rx) = x : D (2)

which implies that D is isomorphic to D→ D.

Untyped λ-calculus We briefly describe the untyped λ-calculus. It is a
theory whose terms are generated by the following grammar:

t ::= v | t! t2 | λx. t .

In words, a variable is a term, an application t t′ is a term, for any terms t
and t′, and a λ-abstraction λx. t is a term, for any term t. Variable x is
bound in λx. t. A context is a list of distinct variables,

x1, . . . , xn .

We say that a term t is valid in context Γ if the free variables of t are listed
in Γ. The judgment that two terms u and t are equal is written as

Γ | u = t ,

where it is assumed that u and t are both valid in Γ. The context Γ is not
really necessary but we include it because it is always good practice to list
the free variables.

The rules of equality are as follows:

1. Equality is an equivalence relation:

Γ | t = t

Γ | t = u

Γ | u = t

Γ | t = u Γ | u = v

Γ | t = v

2. The weakening rule:
Γ | u = t

Γ, x | u = t

7

3. Equations for application and λ-abstraction:

Γ | s = t Γ | u = v

Γ | s u = t v

Γ, x | t = u

Γ | λx. t = λx. u

Γ | (λx. t)u = t[u/x]
(β-rule)

Γ | λx. (t x) = t
if x 6∈ FV(t) (η-rule)

The untyped λ-calculus can be translated into the theory of a reflexive
type from Example 6. An untyped context Γ is translated to a typed con-
text Γ∗ by typing each variable in Γ with the reflexive type D, i.e., a context
x1, . . . , xk is translated to x1 : D, . . . , xk : D. An untyped term t is translated
to a typed term t∗ as follows:

x∗ = x if x is a variable ,

(u t)∗ = (ru∗)t∗ ,

(λx. t)∗ = s (λx : D . t∗) .

For example, the term λx. (xx) translates to s (λx : D . ((rx)x)). A judg-
ment

Γ | u = t (3)

is translated to the judgment

Γ∗ | u∗ = t∗ : D . (4)

Exercise∗ 7 Prove that if equation (3) is provable then equation (4) is
provable as well. Identify precisely at which point in your proof you need to
use equations (1) and (2). Does provability of (4) imply provability of (3)?

8

