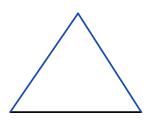
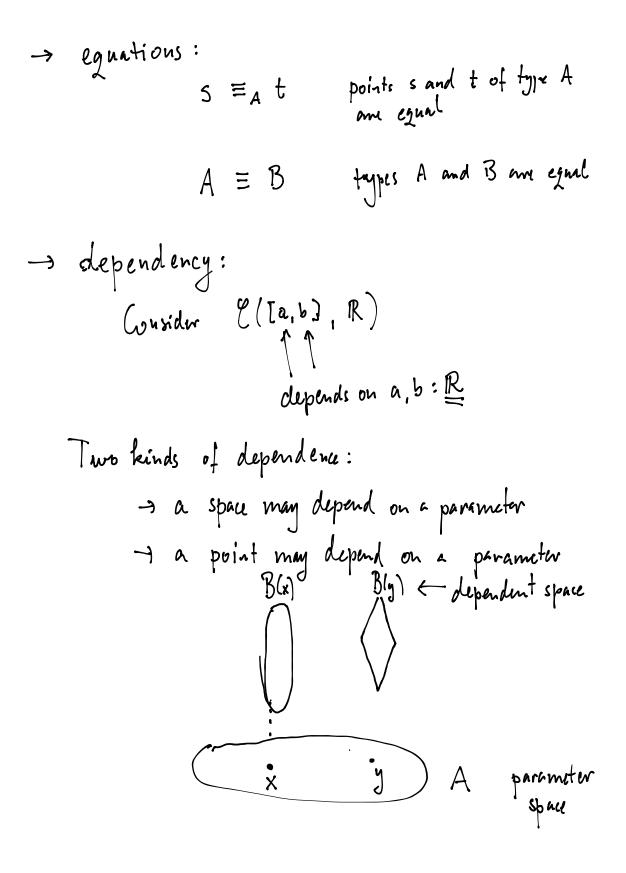
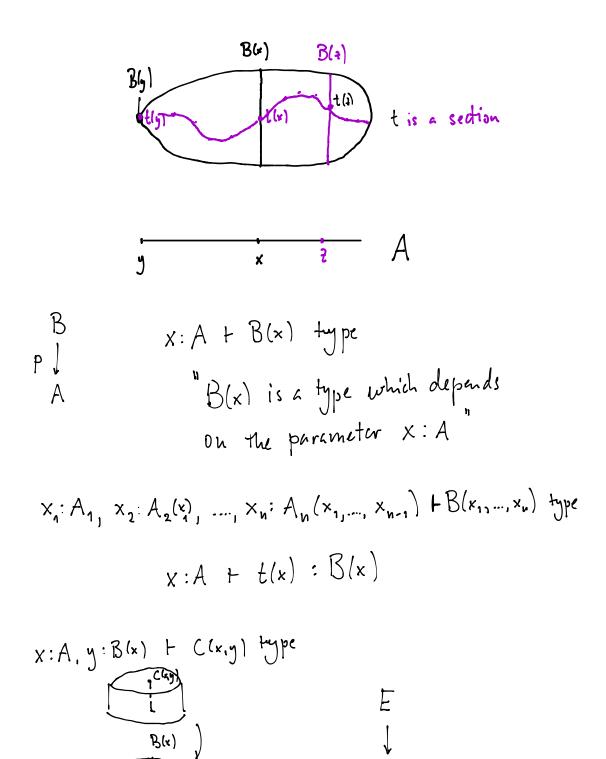
Type theory

a mathematical throng of constructions



-)





B

ł

A

13

x

A

Basic types:
$$O, 1, 2, N, T(x:A)B(x)$$

 $\sum (x:A)B(x)$
U

New type:
- formation: how to form the new type
- constructors: how to construct points
- deconstructors: how to deconstruct/use points
- equations
The unit type 1 (one-point space)
$$P_1 P_2 \cdots P_n$$
 rule
- formation: 1 type
- formation: 1 type
- constructor: $x:1$
- deconstructor: $x:1$
- equations: $\frac{s:1 + 1}{s \equiv t}$ alternative: $\frac{s:1}{s \equiv t}$
Rules for equality: $\frac{A type}{A \equiv A}$ $\frac{A \equiv B}{B \equiv A}$ $\frac{A \equiv B}{A \equiv C}$

$$\frac{1}{0 \text{ type}} \xrightarrow{e: 0} A \text{ type}}{0 \text{ type}} = \frac{e: 0}{absurd_A(e): A} \xrightarrow{e: 0} S \stackrel{S:A \ EA \ A \text{ type}}{S \equiv A t}$$

$$Exercise: Category C, in trial object 0, what is the strice C/0?$$

$$A \land B \Rightarrow A$$

The dependent sum
Suppose type A and
$$B(x)$$
 depends on $x:A$.
Form dependent sum $\sum (x:A) \cdot B(x)$ type.
 $\sum_{x:A} B(x)$

Points of
$$\sum (x:A) \cdot B(x)$$
 are pairs (s,t) where
 $s:A$ and $t:B(s)$.
Given $p: \sum (x:A) \cdot B(x)$ there are
 $\pi_{1}(p) : A$ "projections"
 $\pi_{2}(p) : B(\pi_{1}(p))$
Equations: $\pi_{1}(s,t) \equiv_{A} s$ $(\pi_{*}p,\pi_{2}p) \equiv \sum_{\sum (x:A) \cdot B(r)} P$
 $\pi_{2}(s,t) \equiv_{B(s)} t$

$$\frac{B(s)}{t}$$

$$\frac{B(s)}{t}$$

$$\frac{B(s)}{t}$$

$$\frac{B(x)}{t}$$

$$\frac{B(x)}{t}$$

$$\frac{E(x:A)}{t}$$

$$\frac{B(x)}{T}$$

$$\frac{T}{t}$$

The dependent product
Given type A and
$$x:A + B(x)$$
 type,
dependent product $TT(x:A) \cdot B(x)$.
(The space of sections.)
If $x:A + t(x): B(x)$ is a dependent point then
 $\lambda_{X}:A.t(x)$: $TT(x:A) \cdot B(x)$
 $x \mapsto t(x)$
 $f: TT(x:A) \cdot B(x)$ and $t:A$, have
 $f(t): B(t)$ preplace x with s
Equations: $(\lambda_{X}:A.t(x))(s) \equiv B(s) t(s)$ when $x:A+t(x):B(s)$

$$\lambda x: A \cdot f(x) \equiv f$$

 $\Pi(x:A) \cdot B(x)$
 $J(x:A) \cdot B(x)$

$$\frac{\text{Special cases}}{\text{Suppose we have types } A \text{ and } B.}$$

$$Define dependent \text{Spec} ((x) := B \text{ for } x : A$$

$$B = \begin{bmatrix} B & B \\ B & B \end{bmatrix}$$

The
$$\Sigma(x;A), C(x)$$
 is just the binary product of A and B:
 $A \times B := \Sigma(x;A), B$
Similarly:
 $A \to B$ or $B^A := TT(x;A), B$
 $Maps$ from A to B .

 $E_{Xamples}$ $\lambda p , (\pi_1 p, \pi_1 p) : A \times B \rightarrow B \times A$

Universe: there is a type U which contains
as its points "small types":

$$0, 1, 2, N, \Sigma(x:A).B(x)$$

 $TT(x:A).B(x)$
provided A:U
 $x:A + B(x):U$
The universe U.
Can have a larger universe U:U'. Keep going U:U':U'.
A dependent type $B(x)$ with parameter $x:A$ is
just a point of $A \rightarrow U$.
 $B \rightarrow \tilde{U}$
 $J \rightarrow \tilde{U}$