Functor in applicative
List: Type \rightarrow Type

$$
a \longmapsto[a]
$$

fmap: $(a \rightarrow b) \mapsto$ List $a \rightarrow$ List b

$$
\begin{aligned}
& \text { Maybe } \\
& a \rightarrow b \rightarrow c \quad \text { fump } f\left[1,2^{2}, 3\right]=\left[f^{2}, f^{2}, f^{3}\right. \\
& +: a \rightarrow a \rightarrow a \\
& \text { fromp }(+)[1,2,3]=[(+) 1,(t) 2,(t) 3] \\
& \text { Pure }(\lambda x \rightarrow x)<*) d=d \\
& \text { hinte } f(*) \text { Dure } d=\text { Dure }(f d) \text { ? }
\end{aligned}
$$

IO! $T_{y l^{2}} \rightarrow T_{y p e}$
Int \mapsto IO Int
Monoid: $A, A \times A \rightarrow A$, $: A$

$$
\begin{gathered}
e * x=x * e=x \\
(x * y) * z=x *(y * z) \quad 0 \\
(\mathbb{N},+, 0) \quad\left(R_{>0}, \cdot, 1\right) \quad(e([0,1],+,(\lambda x, 0)) \\
(\text { List }(N),+4,[]) \quad \text { (Maybecb, *, Nothing) } \\
\\
\\
\text { Just } x * \text { Nothing }=\text { Just } x
\end{gathered}
$$

Monid
Kdy' je Maybé monoid? ic je a z̀e mowoid

Just $\frac{x}{a} * \operatorname{Just}_{\frac{y}{a}}=\operatorname{Just}(\underbrace{x * y}_{a})$

